A mutant impaired in the production of plastome-encoded proteins uncovers a mechanism for the homeostasis of isoprenoid biosynthetic enzymes in Arabidopsis plastids.

نویسندگان

  • Ursula Flores-Pérez
  • Susanna Sauret-Güeto
  • Elisabet Gas
  • Paul Jarvis
  • Manuel Rodríguez-Concepción
چکیده

The plastid-localized methylerythritol phosphate (MEP) pathway synthesizes the isoprenoid precursors for the production of essential photosynthesis-related compounds and hormones. We have identified an Arabidopsis thaliana mutant, rif1, in which posttranscriptional upregulation of MEP pathway enzyme levels is caused by the loss of function of At3g47450, a gene originally reported to encode a mitochondrial protein related to nitric oxide synthesis. However, we show that nitric oxide is not involved in the regulation of the MEP pathway and that the encoded protein is a plastid-targeted homolog of the Bacillus subtilis YqeH protein, a GTPase required for proper ribosome assembly. Consistently, in rif1 seedlings, decreased levels of plastome-encoded proteins were observed, with the exception of ClpP1, a catalytic subunit of the plastidial Clp protease complex. The unexpected accumulation of ClpP1 in plastids with reduced protein synthesis suggested a compensatory mechanism in response to decreased Clp activity levels. In agreement, a negative correlation was found between Clp protease activity and MEP pathway enzyme levels in different experiments, suggesting that Clp-mediated degradation of MEP pathway enzymes might be a mechanism used by individual plastids to finely adjust plastidial isoprenoid biosynthesis to their functional and physiological states.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plastid cues posttranscriptionally regulate the accumulation of key enzymes of the methylerythritol phosphate pathway in Arabidopsis.

Plastid isoprenoids (including hormones and photosynthetic pigments) are essential for plant growth and development, but relatively little is known of how the production of their metabolic precursors via the recently elucidated methylerythritol phosphate (MEP) pathway is regulated. We have identified an Arabidopsis (Arabidopsis thaliana) mutant that survives an otherwise lethal block of the MEP...

متن کامل

Human Granulocyte Colony-Stimulating Factor (hG-CSF) Expression in Plastids of Lactuca sativa

Background: Human granulocyte colony-stimulating factor (hG-CSF) can serve as valuable biopharmaceutical for research and treatment of the human blood cancer. Transplastomic plants have been emerged as a new and high potential candidate for production of recombinant biopharmaceutical proteins in comparison with transgenic plants due to extremely high level expression, biosafety and many other a...

متن کامل

Farnesylation directs AtIPT3 subcellular localization and modulates cytokinin biosynthesis in Arabidopsis.

Cytokinins regulate cell division and differentiation as well as a number of other processes implicated in plant development. The first step of cytokinin biosynthesis in Arabidopsis (Arabidopsis thaliana) is catalyzed by adenosine phosphate-isopentenyltransferases (AtIPT). The enzymes are localized in plastids or the cytoplasm where they utilize the intermediate dimethylallyl-diphosphate from t...

متن کامل

Primary root growth, tissue expression and co-expression analysis of a receptor kinase mutant in Arabidopsis

There is no functional annotation for the majority of the several hundreds of receptor-like kinases in plants. A direct way of inferring the function of these proteins is to study the phenotype that results from loss of function mutants such as T-DNA mutant lines. In this research a function (phenotype) to At2g37050 gene that encodes a receptor like kinase in Arabidopsis T-DNA line was...

متن کامل

Evaluation of salinity response through the antioxidant defense system and osmolyte accumulation in a mutant rice

In order to assess the responses of Hashemi rice genotype and its advanced mutant line under salinity stress of 100 mM Sodium chloride (NaCl) for three and six days the shoot samples were taken for biochemical analysis. This experiment was performed in split plot based on randomized complete block design with three replications. The main factor was factorial combination of saline treatmen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 20 5  شماره 

صفحات  -

تاریخ انتشار 2008